

Module specification

When printed this becomes an uncontrolled document. Please access the Module Directory for the most up to date version by clicking on the following link: <u>Module directory</u>

Module code	COM556
Module title	User Experience Design (UXD)
Level	5
Credit value	20
Faculty	FAST
Module Leader	Julie Mayers
HECoS Code	100736
Cost Code	GACP

Programmes in which module to be offered

Programme title	Is the module
	core or option for
	this programme
BSc (Hons) Computer Science	Core
BSc (Hons) Computer Science (with Industrial Placement)	Core
BSc (Hons) Computing	Core
BSc (Hons) Computing (with Industrial Placement)	Core
BSc (Hons) Applied Software Engineering	Core

Pre-requisites

None

Breakdown of module hours

Learning and teaching hours	30 hrs
Placement tutor support	0 hrs
Supervised learning e.g. practical classes, workshops	0 hrs
Project supervision (level 6 projects and dissertation modules only)	0 hrs
Total active learning and teaching hours	30 hrs
Placement / work based learning	0 hrs
Guided independent study	170 hrs
Module duration (total hours)	200 hrs

For office use only	
Initial approval date	03/04/2019
With effect from date	01/09/2019

For office use only	
Date and details of	12/11/2021 template update
revision	
Version number	2

Module aims

This module will explore the usability aspects of user interfaces, and enable students to analysis, design and evaluate existing systems on a range of modern devices. They will also study the impact such technology has on the wider social, ethical, legal, political, economic and environmental issues. This will enable the students to create systems for emerging interactive products such as robotics, portable and wearable devices, and smart home products incorporating aspects of learnability, accessibility, usability, usefulness, and aesthetics.

Module Learning Outcomes - at the end of this module, students will be able to:

1	Work individually and within a team to design solutions for current computing related issues, considering the wider social, ethical, legal, political, economic and environmental impact
2	Explain the need for good UXD practice, from the perspectives of computing and cognitive psychology
3	Select appropriate communication styles, perform user modelling, task analysis and user interface design in the context of UXD
4	Employ a range of methods to evaluate the user experience, including quantitative and qualitative methods

Assessment

Indicative Assessment Tasks:

Students will be given 2 assessments:

- A case study scenario, whereby students will be given an existing design to analyse and produce recommendations to improve its usability. Students will then re-design the user interface to include their recommendations. Where practical the scenario will be related/carried out in the workplace. (2,000 words)
- 2. A practical usability evaluation of another student's design, selected from the first assessment submissions (group work). Students will also need to consider the wider social, ethical, legal, political, economic and environmental impact. (3,000 words)

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)
1	2, 3	Case Study	70%
2	1, 4	Group Project	30%

Derogations

None

Learning and Teaching Strategies

Lectures, seminars, tutorials, practical classes and workshops will be used throughout this module to support students' learning and to develop the practical research skills required to perform credible usability analysis, design and evaluation.

Indicative Syllabus Outline

- 1. Overview of the history and future of human-computer interaction/UX.
- 2. Physiological issues.
- 3. Social, Ethical, Political, Legal, Economic and Environmental Issues 4. Psychology and its role in UX, with an emphasis on cognitive psychology.
- 5. User modelling.
- 6. Interaction styles (touch, speech, direct manipulation and other emerging technologies etc.).
- 7. Use of best practice considering the wider social, ethical, legal, political, economic and environmental impact
- 8. Usability analysis (e.g. task analysis).
- 9. Usability design guidelines/standards (as informed by principles of psychology).
- 10. Usability evaluation methods and techniques, including laboratory and field testing.
- 11. Quantitative evaluation data analysis.
- 12. Qualitative evaluation data analysis.

Indicative Bibliography:

Please note the essential reads and other indicative reading are subject to annual review and update.

Essential Reads

Preece J, Rogers Y and Sharp H (2016) Interaction Design: Beyond Human-Computer Interaction, 4^{th} Ed, Wiley

Other indicative reading

Benyon, D. (2019). Designing User Experience: A guide to HCI, UX and interaction design (4th ed). Pearson Higher Ed.

Interaction Design Foundation (2019) *The Encyclopedia of Human-Computer Interaction* (2nd ed). URL: https://www.interaction-design.org/literature

Spool J, Rubin D and Chisnell D (2008) Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests, Wiley.

Ritter, F.E., Baxter, G.D., Churchill, E.F. (2014) Foundations for Designing User-Centered Systems: What System Designers Need to Know about People, Springer.

Employability skills - the Glyndŵr Graduate

Each module and programme is designed to cover core Glyndŵr Graduate Attributes with the aim that each Graduate will leave Glyndŵr having achieved key employability skills as part of their study. The following attributes will be covered within this module either through the content or as part of the assessment. The programme is designed to cover all attributes and each module may cover different areas.

Core Attributes

Engaged Enterprising Creative Ethical

Key Attitudes

Commitment Curiosity Resilience Confidence Adaptability

Practical Skillsets

Digital Fluency
Organisation
Critical Thinking
Emotional Intelligence
Communication